

Riad FARAH C.E, cHTM

Riad FARAH

Clinical Engineer cHTM

HTM certified by ACI

- Objectives:
- Hospitals in Lebanon
- Biomedical Engineers in Lebanon
- Biomedical Engineering, Clinical Engineering and HTM
- HTM at Saint George Hospital
- HTM Implementation Projects; examples
- Project: Repair / Replacement Algorithm
- 5 min exercise

- Objectives:
- Hospitals in Lebanon
- Biomedical Engineers in Lebanon
- Biomedical Engineering, Clinical Engineering and HTM
- HTM at Saint George Hospital
- HTM Implementation Projects; examples
- Project: Repair / Replacement Algorithm
- 5 min exercise

Hospitals in LEBANON

- **GNP** (Gross National Product) **(USD)** 50,000,000,000 GNP = GDP + NR (Net income inflow from assets abroad or Net Income Receipts) – NP (Net payment outflow to foreign assets).
- GDP = consumption + investment + (government spending)
 + (exports imports).
- Hospitalization Bill (USD) 1,500,000,000
- Number of Admissions /year 700,000
- Number of registered Physicians 12,827
- Number of registered Nurses 10,079

Reference: Mr. Sleiman HAROUN – 2014; Syndicate of Hospitals

Hospitals in LEBANON

Private Hospitals:

Short and Medium Stay: 117

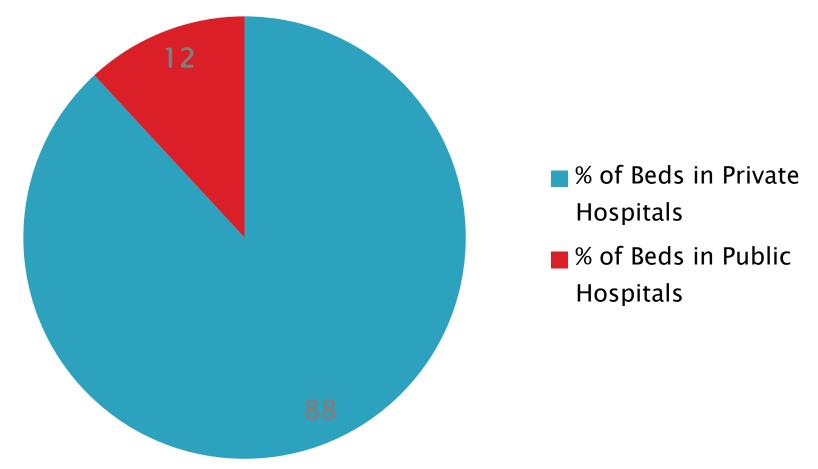
Number of Beds: 10,045

> – Long Stay: 19

Number of Beds: 3,496

Public Hospitals: 28

Number of Beds: 1,354


Reference: Mr. Sleiman HAROUN - 2014; Syndicate of Hospitals

Geographic Distribution of Beds – Lebanese Hospitals

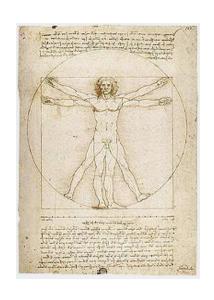
Region	<u>Private</u>	<u>%</u>	<u>Public</u>	<u>%</u>	<u>Total</u>	<u>%</u>
Beirut	1,921	19.12	346	25.55	2,267	19.89
Bekaa	1,472	14.65	150	11.08	1,622	14.23
Mount Lebanon	3,626	36.10	381	28.14	4,007	35.15
North	1,578	15.71	202	14.92	1,780	15.62
South	1,448	14.42	275	20.31	1,723	15.12
<u>Total</u>	10,045	100	1,354	100	11,399	100.00

Reference: National Hospital Database 2012 – Syndicate of Hospitals

Percentage of Beds in Hospitals

Reference: National Hospital Database 2012 - Syndicate of Hospitals

Hospitals in LEBANON

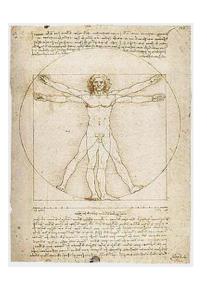

- Private Hospitals:
- √ 83% are Private Hospitals (long/med/short stay)
- Distribution of Beds correlates with distribution of Inhabitants
- Even distribution of Beds in the peripherals (North, Beqaa, and South)
- ✓ Mount Lebanon 36% of Beds
- ✓ Beirut 19% Beds

- Objectives:
- Hospitals in Lebanon
- Biomedical Engineers in Lebanon Biomedical Engineering, Clinical Engineering and HTM
- HTM at Saint George Hospital
- HTM Implementation Projects; examples
- Project: Repair / Replacement Algorithm
- 5 min exercise

- Biomedical Engineers and Order of Engineers
- Biomedical Engineers and the Ministry of Health
- Biomedical Engineers and the Syndicate of Hospitals
- HTMA; New Society for Healthcare Managers

- Biomedical Engineers and Order of Engineers
- Two Sections: Beirut and Tripoli
- Total registered Engineers (5 years University degree; B.E or M.S) (2016; Beirut section) 40,810
- Biomedical Engineers are part of 4th branch;
 Employees; (2016; Beirut section)
- Chair (Nakib) of Order of Engineers promised us to open a Chapter for Biomedical Engineers
- There is no clear Biomedical Engineering registry yet (WHO Survey)

- Biomedical Engineers and Order of Engineers
- Tripoli Section
- Total registered Engineers (5 years University degree; B.E or M.S) (2017; Tripoli section)
- Biomedical Engineers are part of 4th branch;
 Employees; (2016; Beirut section) 1,207
- (WHO Survey)

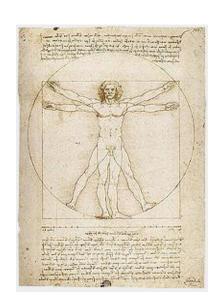

Ministry of Health MOH:

- WHO and MOH promoted HTM/HTA in 2014. (Need for Biomedical Engineers).
- MOH launched HTA in 2017 and started assessing Hospital readiness
- Medical Devices registry and tracking
- Promotes need for a Biomedical Engineer at every Hospital
- Biomedical Engineering in Hospital Accreditations
- Biomedical Engineering input in Hospital Architecture and licensing standards

Syndicate of Hospitals:

- -Promotes need for a Biomedical Engineer at every Hospital
- Biomedical Engineering in Hospital Accreditations
- Biomedical Engineer at LIBNOR
 Lebanese Norms Institute
- Biomedical Engineering input in Hospital Architecture and licensing standards

HTMA: Health Technology and Management Advancement committee of the LHMA (Lebanese Hospitals Management Association) October 2015.


New group for Biomedical Engineers and Professionals working in the HealthCare Technology (Professors, Radiology / Quality Managers...).

Shall be the nucleus for proper Biomedical Engineering Society.

Still in the infrastructure Phase.

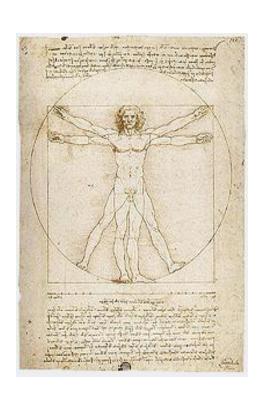
All are free to join and participate.

Elections shall soon start

HTMA: Health Technology and Management Advancement committee:

To promote Biomedical Engineers to establish a new committee in the Order of Engineers

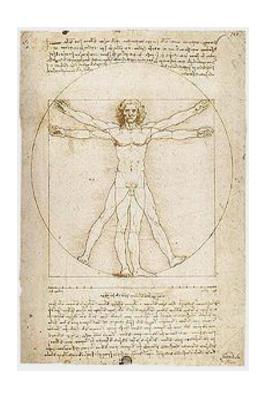
To promote Biomedical Engineering and specialties in the Syndicate of Hospitals, and highlight benefits


To promote Biomedical Engineering in the Ministry of Health through active participation in setting the National Accreditation standards To assist all who works with Healthcare Technology

- Objectives:
- Hospitals in Lebanon
- Biomedical Engineers in Lebanon
- Biomedical Engineering, Clinical Engineering and HTM
- HTM at Saint George Hospital
- HTM Implementation Projects; examples
- Project: Repair / Replacement Algorithm
- 5 min exercise

Health Technology Management (HTM)

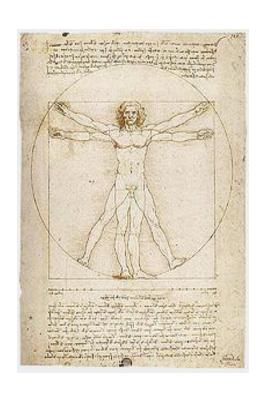
- Need Clarifications:
- Differences and relation between:
- Biomedical Engineering
- Clinical Engineering
- > and HTM


Definition of Biomedical Engineering

Biomedical Engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health. It advances fundamental concepts; creates knowledge from the molecular to the organ systems level; and develops innovative biologics, materials, processes, implants, devices and informatics approaches for the prevention, diagnosis, and treatment of disease, for patient rehabilitation, and for improving health.

Reference: www.bmes.org NIH working definition of bioengineering – July 24, 1997

Definition of Biomedical Equipment Technician BMET



Biomedical Equipment Technician BMET: Biomedical Equipment Technician I—An entry-level or junior BMET. Works under close supervision. Performs skilled work on preventive maintenance, repair, safety testing, and recording functional test data. Usually has less than four years of experience.

BMET: Biomedical Equipment Technician II—A BMET who usually has an AS (2-year) degree or higher and several years of related or equivalent experience. Has good knowledge of schematics and works independently on repairs, safety testing and planned maintenance (PM). Maintains records, writes reports, and coordinates outside repairs. Average experience is eight years.

Reference: Career Planning Handbook; AAMI 2014; www.aami.org

Definition of Biomedical Equipment Technician BMET

Biomedical Equipment Technician

Sr. BMET: Biomedical Equipment Technician III—A highly experienced or specialized BMET usually having an AS (2-year) degree or higher. Has substantial experience and may be certified (CBET). Does highly skilled work of considerable difficulty. Has comprehensive knowledge of practices, procedures, and types of equipment. Average experience is twelve years.

Reference: Career Planning Handbook; AAMI; www.aami.org

Definition of Clinical Engineering

Clinical Engineering is a branch biomedical engineering for professionals responsible for the management of medical equipment in a hospital. The tasks of a clinical engineer are typically the acquisition and management of medical device inventory, supervising biomedical engineering technicians (BMETs), ensuring that **safety** and **regulatory** issues are taken into consideration and serving as a technological consultant for any issues in a hospital where medical devices are concerned.

Reference: ACCE; American College of Clinical Engineering

Definition of HTM Health Technology Manager

Biomedical Engineering:
#1 JOB
IN AMERICA

HTM Health Technology Manager; Supports the HealthCare Community in the development, management, use of safe and effective technology.

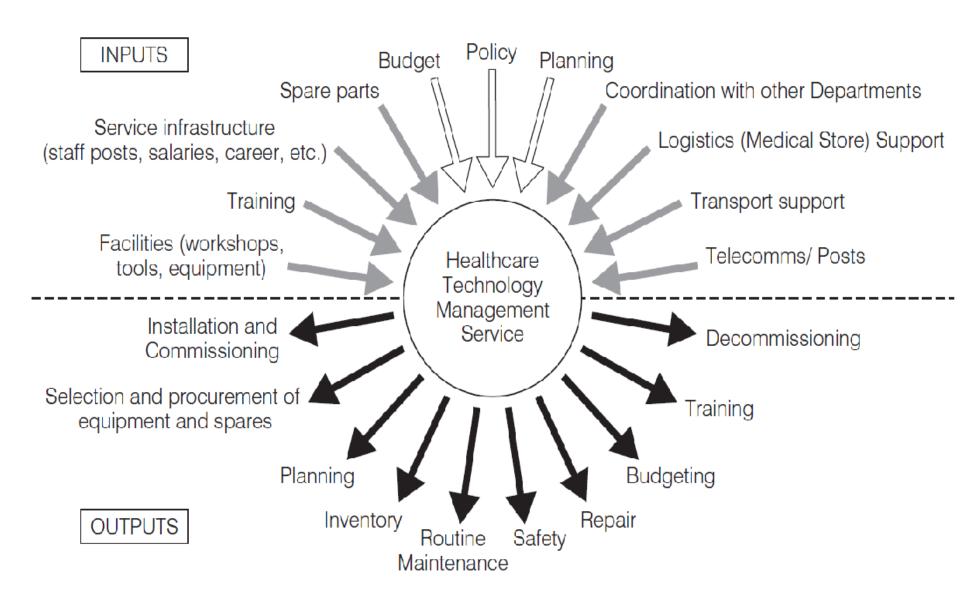
- TMC: AAMI's Technology Management Council launched in 2013.
- 3 Levels of HTM: Fundamental, Progressive and Advanced
- Each Level contains requirements and defined in several aspects: scope, compliance, management, equipment maintenance, Personnel and staff development, tactical and strategic planning, performance monitoring and improvement, patient and staff safety, work with other departments

Reference: AAMI HTM Levels Guide 2014, www.aami.org

HTM list of responsibilities

Responsibilities of the HTM include the following:

- Development/management of the dept. annual goals
- Development and management of the medical equipment service business plan


- Development and management of the operating budget
- Development and management of the capital budget
- Contract management
- Management of the in-house operational program
- Medical equipment technology planning
- Medical equipment selection and acquisition

HTM list of responsibilities

Responsibilities of the HTM include the following:

- Medical equipment acceptance testing
- Management of the medical equipment planned maintenance program
- · Medical equipment performance assurance evaluations
- Medical equipment safety inspections
- Management of the medical equipment repair program
- Management of medical equipment hazard alerts and recalls
- Medical equipment management trending and analysis
- Training of BMETs and supervisors
- Incident investigation of medical device related injuries

- Objectives:
- Hospitals in Lebanon
- Biomedical Engineers in Lebanon
- Biomedical Engineering, Clinical Engineering and HTM
- HTM at Saint George Hospital
- HTM Implementation Projects; examples
- Project: Repair / Replacement Algorithm
- 5 min exercise

HTM Implementation at Saint George Hospital – Lebanon

- SGH-UMC Established in 1878
- General University Teaching Hospital
- 380 beds
- 23,343 patients/year
- (84% are private Hospitals in Lebanon)

Saint George Hospital University Medical Center

Medical Engineering Departm	ent	
medical devices	1,769	
acquisition cost \$	\$25 Millions	
devices serviced In-house	77.5%	
devices av. Age	8.46 yrs	
#Services /yr	8,762	
working hours /yr	7,015	
#purchasing Studies /yr	122	
#installations /yr	169	
Full Time Equivalent FTE staff	16	
application Trainings /yr	60	
adv. Trainings at Factory /yr	7	
av. CEU	47.85	

1		Street	150	1
1/10		THE T	£ 9	4
	*	Tark		
	1	XIX		1/2
1	1/	计件人	1.	
	4	70°C	10	
725	ACCUSED AN	en every of transport		4
50.00	20-0-0			6.0

Cost of Service Ratio COSR* 4.6%

*: must be <6% (Cohen et al, AAMI2015)

Medical Engineering 20 years of services

▶ **1,769** medical devices served (May 2017)

24,748,753US\$ purchase cost

▶ **8.46** year is the overall average Age of equipment (vs 7 years guide number in USA)

- 95% of the number of medical devices serviced in-house (vs 70% int'l) (77.5% of the \$ value)
- 5% #equipment under Service Contracts
- 8,762 Services a year
- 122 Purchase Studies a year
- 169 Installations a year (varies with years)

Indicators (benchmarked)

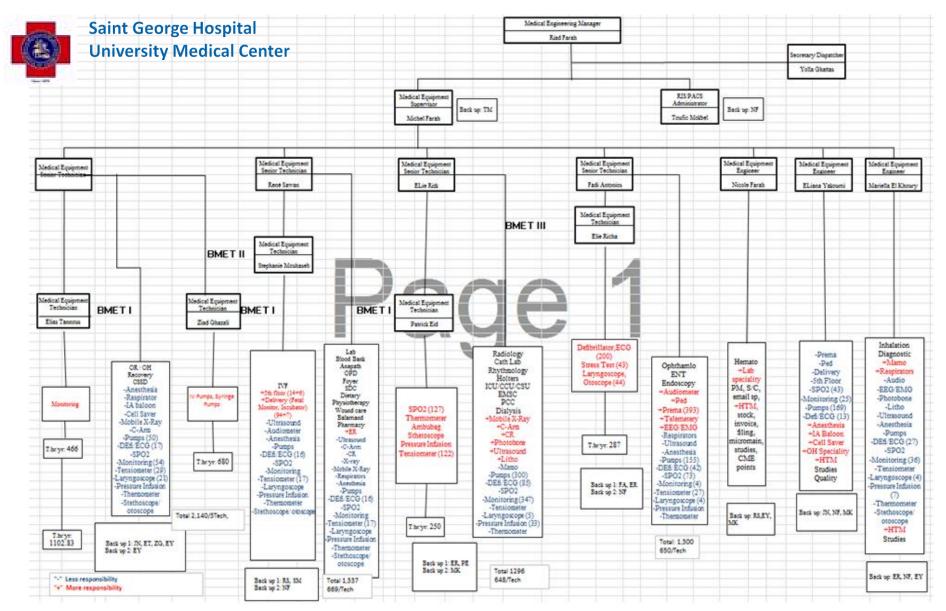
- Yearly Financial; compares Service expenses versus outsourcing
- Cost of medical devices; by Dept., by specialty
- ▶ AGE of medical devices; by Dept., by specialty
- Service Contracts; coverage % and \$
- Suppliers; distribution, %, and \$
- Others ...

Indicators (benchmarked)

- COSR; Cost of Service Ratio
- ► COSR = <u>Total Cost of Expenses</u>

 Total Cost of purchased Equipment

- Should be <6% (according to study Cohen et al, AAMI2017)
- SGHUMC COSR=4.6%


Indicators (benchmarked)

COSR; Cost of Service Ratio

Expenses = Salaries + Benefits + Dept. consumption + Trainings + Tools + Service Contracts & Labor charges+ Spare Parts

- ▶ 16 FTE full time employees
- ▶ 10 direct Repairs, 3 Repairs & Studies
- Grouping / back up by other 3
- JCAHO compliant (2006) (W.I. reengineered, simpler, only 2 forms)
- Continuously Trained
- 60 Application Training / year
- 7 Advanced Factory Training / year
- 43 Internal Training / year
- 47.8 average certified contact hours

Medical Engineering Department 2017

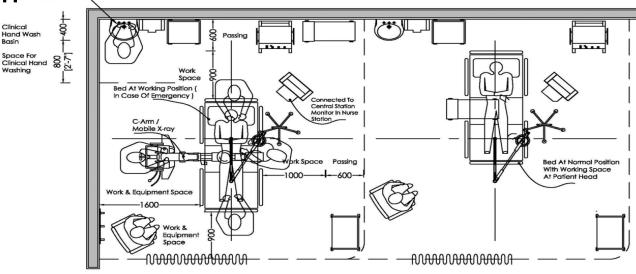
WHO 2014

HTM to be implemented in Lebanon "45% of purchased technology NOT needed by Patients in 3rd World Countries" WHO & AAMI implementation guidebooks

HTM Benchmarking guide – AAMI

Guidebook: HTM a practicum for Health Technology Management; by AAMI

- What HTM should be
- HTM Implementation
- Replacement / Repair
- Reliability-Centered Maintenance RCM
- Incidents investigations
- needs Assessment HTA
- Min specs (Evaluation, Studies, Reception, Safety & Quality checks, Calibration, PM check sheets, FEATURES used)



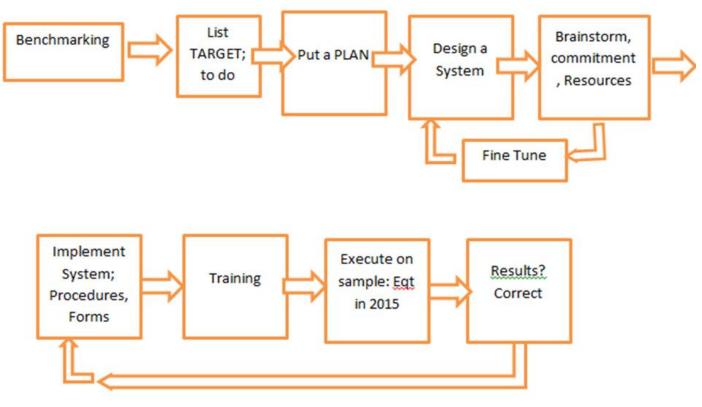
Guidebook: HTM a practicum for Health **Technology Management; by AAMI**

- What we can also do
- Benchmarking, KPIs, vs international peer hospitals
- Project and Healthcare Facility management
- Room Schedule RS, Bill of Quantity BOQ

Basin Space For

Medical planner, Loaded Drawings, hospital Architecture (FGI), standards...

- 2015: Staff commitment in HTM
- Tabulate HTM requirements
- Gap Analysis
- Table of Lists to do
- Plan for 2020 achievements
- Change responsibilities by Specialty
- Need to reduce activity wastes (LEAN)
- (e.g.: Features purchased vs used)

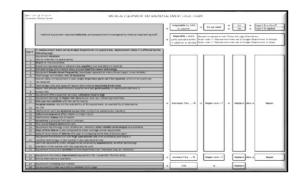


FUNDAMENTAL	
Standards and Regulations	MED Compliancy
The HTM program maintains most of the general biomedical equipment in the organization	✓
The HTM program has a current, written medical equipment management plan (MEMP)	To complete
The HTM program achieves compliance with accreditation standards and government regulations	1
The HTM program has an equipment control program in place with a risk-based inventory	
The HTM program uses a Computerized Maintenance Management System (CMMS) for inventory, maintenance scheduling, and maintenance history	To replace software
The HTM program has the ability to readily obtain repair parts	1
The HTM program has written procedures for safety and functional testing and for preventive maintenance	Partly available, to do reference to ECRI
HTM program personnel have appropriate education, experience, credentials, and values	1

- ➤ Top Management commitment
- Committees; Purchasing, Safety, CSR, Sustainability Design and Facility Management, Accountability / Matrix (Just Culture)

20/20 HTM Implementation Project - SGH UMC

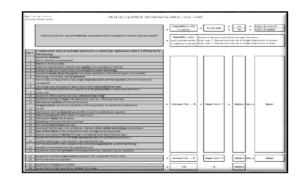
Implementing Health Technology Management (HTM) in Lebanon


- Objectives:
- Hospitals in Lebanon
- Biomedical Engineers in Lebanon
- Biomedical Engineering, Clinical Engineering and HTM
- HTM at Saint George Hospital
- HTM Implementation Projects; examples
- Project: Repair / Replacement Algorithm
- 5 min exercise

PROJECT 1 Replace / Repair Algorithm

Now: we Repair if Repair cost<25% of its Purchase Cost

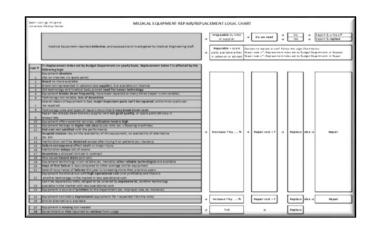
This doesn't reflect the quality, reliability, and performance of the defected equipment


- Need for a Formula:
- Systematic
- Objective not subjective
- Standardized
- Reflects technically the status of the defected equipment in question
- Input from top Administration
- Reported to Administration / Purchasing Department / Budget

Workshop Replace / Repair Algorithm

5 min exercise; group of 3 (Just write down notes) (we learn from each other's experiences)

WHAT ARE THE LOGICAL RULES YOU NORMALLY REFER TO DECIDE WHETHER TO REPAIR OR TO REPLACE?



- Need for a Formula:
- Systematic
- Objective not subjective
- Standardized
- Reflects technically the status of the defected equipment in question
- Input from top Administration
- Reported to Administration / Purchasing Department / Budget

PROJECT 1 Replace / Repair Algorithm Based on K coefficient

- Availability / quality of support
- Reliability
- Failure consequences
- Financial / depreciation
- No equivalent backup
- Need for new Tech or service

Medical Engineering Department 2017

• . . .

- The concept formula
- $K = \Sigma(Wn*Ln)*R$

- ▶ If K ≤ T → Repair
- ▶ If K > T → Replace

- T is the Repair or Replace Threshold
- T is by default 25%
- T is set by the hospital Administration and Budget Department, based on the availability of funds and/or related operational budget
- T is set once a year, one month before the fiscal year
- If shortage in operational budgets, then T is increased meaning more repairs
- Otherwise, when budget is available, T is decreased.

R is the Repair Cost Percentage, which equals to the Total Repair Cost over the Replacement Cost

- Ln is number nth Logical Rule for Repair or Replacement (i.e.: L1 is for logic rule # 1).
- L is TRUE, FALSE, or Not Applicable

- Wn is the Weight of importance of number nth Logical Rule.
- The current 26 logical rules do not carry the same weight of importance.

- It Logical Rule number 1 is equipment obsolete. The Equipment is very old, is no longer under production (end of life), and spare parts and support are no longer available (end of support).
- ▶ 12 Logical Rule number 2 is related when the **brand** name of the equipment is no more available; the manufacturer is either closed, sold out, or merged with other company and changed products. Therefore the manufacturer support and spare parts will not be available for the equipment.

▶ 15 is related to when the equipment **breaks down** frequently. It has been repaired many times but it is still frequently getting defective. Therefore the equipment is no longer reliable, expects to break down again, and better not to use it on patients.

- ▶ 110 is when the equipment is important, offers essential services, and its **utilization level** is high. In that regards the equipment should be classified as such, and repair/replace logic should consider the importance.
- Il 1 is when the equipment belongs to higher risk class as per International references, like American Hospital Association AHA or others (ex. Lifesaving machines).

- 114 is when the malfunction can't be detected except after using it on patients (ex. Some types of Electro-surgery devices). Its usage may sometimes be dangerous and may threaten patient's life. Some equipment does not have self-test on booting up.
- 115 is when **failure consequence** affects death or major injury like the case of life saving machines, or electrotherapy devices... Therefore machine is not reliable and better not to use it on patients.

- ▶ 118 is when FDA issued hazard alerts and recalls on this device.
- I21 is when indicators show that the rate of occurrence of failures this year is increasing more than previous years.
- I23 is when the equipment can't be repaired in-house by the Medical Engineering Department, obliged to be covered by expensive Service Contract, and another technology available in the market with less servicing cost.

- 125 is when the equipment is not totally depreciated (equipment life < expected life time).
- ▶ 126 is when similar alternative **back-up** equipment is available. Replacing a defected equipment which does not have a back-up is more serious than another one with back-up available. This logic varies between hospitals, and is device dependent.

- Moreover, there are other logical rules, but affect the formula differently. If the government or any other reference bodies like FDA reported to retrieve the equipment from usage, then K=0 and machine will be replaced.
- If the defected equipment is judged irreparable and is needed, then it will be replaced. Otherwise, if it is not needed, then it will be written off.

Reliability Centered Maintenance RCM, (and Failure Mode & Effects Analysis): Started in Aviation Reduced PM costs by 70%

- Functions / failure mode
- Events leading to failure / quantify
- What to prevent / hidden failures
- Factory recommendations / check list
- Reduce steps

PROJECTS

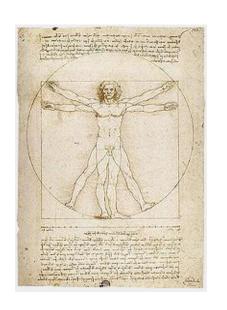
- Digitizing the whole Hospital
- Digitizing Diagnostics Dept. ready
- Digitizing Endoscopy Dept. ready
- Medical Database Center ready
- Back-up Plan ready
- Emergency Plan under improvement
- Equipment Life Cycle
- Unify Assets definition, and Assets books ready
- OR Instruments management ready

Medical Engineering Department 2017

11/05/2017

Need to introduce two extra levels of Technicians

- Three levels of Technicians
- BMET I, BMET II, BMET III as per International HTM scales
- Assignments by experience, knowledge, degree, and skills
- Maintaining current HR scale for all other staff
- Salaries suggested in between current technicians and Senior Technicians


Jedical Engineering Manag BMET III Die Licha BMETII BMETI

Technicians skills

Computer Operation Anatomy / physiology Electronics Non scale Special Tools Networking and IT software Connectivity with other devices Storage management Pre-installation requirements Application training Training and teaching skills

	В	C	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	5	T	U
-	TAG #	ltern	FDA Nomenclature	computer	electronics troubleshooting	operation	technical repair	technical training needed	service keys	special service keys	service manual	special tools for repair	testing tools	special calibration requested	patient safety	network connectivity	connectivity to other units	pre-installation requirements	application training needed	special software application
,	3	ASPIRATORS, SURGICAL	Apparatus, Suction, Patient Care		٧	٧	٧		2 3		٧				٧	-	-		-5-	
,	2708	TELEMETRY, REVIEW STATION	Telemetry, review station	√	V	٧	٧	1	٧		1					٧	٧	٧	٧	√
	1038	INCUBATORS, INFANT	Incubator, Neonatal		٧	٧	٧	٧		-	٧				٧			٧	V	
,		PHOTOTHERAPY UNITS. HYPERBILIRUBINEMA	Unit, Neonalal Phototherapy		٧	٧	٧	6	-		٧		٧	-	٧	ě		-	-	
,	1543	RESUSCITATORS, BABY	RESUSCITATORS, BABY		٧	٧	V		8		1				V				ie.	.8
	1756	ULTRASOUND	ULTRASOUND	٧	٧	٧	٧	٧	٧	٧	٧		٧			٧	٧		1	٧
	1788	HUMDIFIER	Heater, Perineal, Radiant, Non-Contact			٧	٧				٧				٧		٧		14	×
	2062	SCALES, INFANT, DIGITAL	Scale, Palient, Infant, Digital*		٧	٧	٧	į.	a a	¥			٧	57	2	12	5	(2)	12	
	2151	VIEWER, VEIN	VEWER, VEN	2	8	٧	٧		B	0	8		s	_ 35		0			1	- 2
	2/52	TRANSLLUMINATOR, NEDNATAL	TRANSILLUMNATOR, NEONATAL		٧	1	٧				1							127		
7																				

Biomedical Engineering - Global

World Health Organization WHO - Medical Devices

http://www.who.int/medical_devices/en/

International Federation for Medical and Biomedical Engineering IFMBE

http://2016.ifmbe.org

American College of Clinical Engineering

http://accenet.org

Association for the Advancement of Medical Instrumentation AAMI

http://www.aami.org/

2nd International C.E & HTM Congress Sao Paulo Brazil

Global Clinical Engineering Day- OCT 21



http://cedglobal.org/globalclinical-engineering-dayglobalceday/

Global Clinical Engineering Day – #GlobalCEDay

Biomedical Engineering - Global

World Health Organization WHO - Medical Devices

http://www.who.int/medical_devices/en/

International Federation for Medical and Biomedical Engineering IFMBE

http://2016.ifmbe.org

SURVEY

https://docs.google.com/forms/d/e/1FAIpQLSfvtucVwuhQrALeGw_la4VoXKvRU03K HuQb9RxVaAUH9cLlKw/viewform?usp=sf_ link

Medical Engineering Slogan

WE GLADLY SERVE BEFORE YOU ASK

QUESTIONS?